Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomolecules ; 12(5)2022 05 13.
Article in English | MEDLINE | ID: covidwho-1855504

ABSTRACT

Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.


Subject(s)
COVID-19 , Pandemics , Agriculture , Animals , Fishes , Humans , Meat , Stem Cells
2.
Micromachines (Basel) ; 13(3)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1760774

ABSTRACT

Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.

3.
Biology (Basel) ; 10(3)2021 Mar 09.
Article in English | MEDLINE | ID: covidwho-1143454

ABSTRACT

Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.

SELECTION OF CITATIONS
SEARCH DETAIL